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INTRODUCTION 
 

   In an attempt to analyse real life problems, the concept of 

mathematical model or formulation of problems are readily employed 

(Driver, 1977).  The mathematical models often chosen are 

differential equations.  Differential equations merely abstract the 

reality of dynamic systems by disregarding certain physical facts 

which seem to be of minor influence, such that in complicated 

physical situations the differential equation does not guarantee the 

true picture of reality (Kreyszig, 1979). The introduction of functional 

differential equations (Hale, 1977; Driver, 1977; Cheban, 2002; Asl 

and Ulsoy, 2000 and Davies, 2006) has helped to address the lapses of 

the differential equations in modeling dynamic systems. 

   Retarded equations are special class of functional differential 

equations with time lag functions incorporated only in the state of the 

system, which account for the past states as well as the present states 

(Asl and Ulsoy, 2003).  A general retarded functional differential 

equation is given as, 

  .,..,3,2,1,)(),(,)(  nnhtxtxtftx (1.0) 

where )(tx  is the state of the system at time t, )(tx  is the 

derivative of the state function with respect to time t, and )( nhtx   

is the time lag function, with h > 0 defining the delay interval. 

The challenges of analyzing system (1.0) include the establishment of 

the theory for the existence and uniqueness of the solution, finding an 

analytic solution, and analyzing the asymptotic stability properties of 

the solution (Hale and Cruz, 1970). Necessary and sufficient 

conditions for the existence and uniqueness of the solution of (1.0) are 

of immense importance, and research to investigate these conditions  

 

 

 

 

 

are found in the works of Hale and Cruz (1970), Hale (1977), Driver 

(1977), Onwuatu (1993) and Falbo (1995). 

Hale (1977) provides necessary and sufficient conditions for global 

existence and exponential estimates of the solution of non-linear 

retarded system 

 

 .
0

,
0

,)(

0),()(,)(

thtttx

ttbhtxtLtx









                          (1.1) 

This is extended to the linear retarded system (1.0) by Driver (1977)                  

and Falbo (1995). 

   The set back in analyzing system (1.0) lies in the special 

transcendental character of its characteristic equation which renders 

the determination of its analytic solution very difficult.  Driver (1977), 

Liu and Mansour (1984) and Lam (1991) employ the concept of 

exponential estimate in solving the characteristic equation of (1.0), 

while Hmamed (1986),  Han (2001) and Asl and Ulsoy (2003) utilize 

approximating techniques in achieving their results.  Different 

acceptable techniques have been employed to investigate the 

necessary and sufficient conditions for asymptotic stability properties 

of the solution of (1.0)   ( Hale, 1977; Driver 1977; Liu and Mansour’, 

1984; Hmamed, 1986; Asl and Ulsoy, 2003; Han, 2001; and Davies 

,2006).This paper explores the convergent properties of the integral 

equation equivalent of (1.0) to establish the existence and uniqueness 

of solution of the system. Also, a numerical approximating technique 

is used in solving an initial value problem of the retarded system and 

solution presented in  form of finite series, whose asymptotic stability 

properties are investigated for each delay interval by utilizing local 

Lipschitzian condition. 

 

 

 

 

 

 

 

ABSTRACT 
 

The special transcendental character of the characteristic equations of the retarded differential system makes it difficult to analyze such 
systems. Researchers have used various acceptable mathematical techniques to address the issue. In this paper, the convergent properties 
of an integral equation equivalent of a retarded system were used to establish the existence and uniqueness of the solution of retarded 
differential equations. A numerical approximating technique was employed in solving the initial value problem of the retarded system and 
the solution is presented in the form of a finite series. The asymptotic stability properties of this solution were investigated.  
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Solution of retarded differential systems 

 
 

METHOD OF STUDY 

Notations 

En is an n – dimensional Euclidean space for n > 0, with   as the 

Euclidean vector norm.   n

H EthtB ,,0   is a Banach space of 

continuous differentiable function on  tht ,0 , where 

{   n

o Ethth  ,: } continuousishand . )(s  is a 

continuous differentiable function with norm in 

  n

oH EthtB ,,  defined as )(sup)(
00

ss
tsht




 , and 

x(s) = x(t -h), t   to defines the trajectory segment in  

  n

oH EthtB ,, .  

 

PROBLEM STATEMENT 

   Consider a general initial value problem of a retarded system of the 

form 

  0,)(,)(  hhtxtftx    

,,)( 0 tshtsx o    (2.0) 

where )(tx  is derivative of the state function x(t) with respect to 

time t, and )( htx  is a continuous time lag function with h > 0 

defining the delay interval.  For a given initial 

condition tshtsx  00,)(  , does system (2.0) admits a 

unique solution? 

Theorem 1 

   Let x(t) and f be continuous En–valued function with domain 

  








 1,,)()(: 00 ntnhtshssxxD  , 

such that   Dtnhtf  ,: 0  is a contraction in 

  n

H EthtB ,,0   . Then there exists a unique solution of (2.0). 

Proof 

    The integral equation equivalent of system (2.0) is given as  

  
 

t

ht
nnn dsssftt

0

.)(,)()( 01              (2.1) 

Assume )()( 1 ttx n  is a solution of (2.1) passing through  

      nn

Hn ExEthtBtsts ],,[),(,),( 0100  , 

then   .)(,)(1 httft nn     Since f is continuously 

differentiable on the close interval  tht ,0  , let there exists a 

positive real value m>0 such that mhttf  ))(,( 1  , for any   

 thtt ,01  . Suppose that at  thtt ,01  , 

,),())(,( 10101 tshtwhereshttf   it 

implies  

mhttfs  ))(,()( 011  .                                    (2.2) 

Since  )(1 s  is a solution on  10 ,tht  , then for every t2>t1,  

 thtt ,02  , there exists a solution  

20022 )),(,()( tshtwherehttfs    and  

)()( 12 ss   . Therefore, for  thttn ,0  ,   

))(,()( 0 httfs nn   . Thus we have a sequence of nested 

solutions  )(sn  in the close interval  tht ,0  . Let f  be a 

contraction in   nn

H ExEthtB ],,[ 0    and for any real 

constant 0 <m0<1,                       

 tshtsmhttf  00 ,)())(,(           (2.3) 

holds. Thus ,))(,( 1 httf  ,))(,( 2 httf  . . . 

))(,( httf n  are closer for each  

t1> t2 > …>tn. 

Assume  )(sn  to be a bounded monotone increasing sequence 

of solution, for any positive value 0 , there exists at least one 

positive integer i>0 such that 

 )()()( sss i                                     (2.4) 

 

Now )()( 1 ss nn   for all n, hence for every n>1, 

)(sn satisfies (2.4), and hence 

  )()()( sss n   

The norm )(sup)(
0

ss
tsht




  defines the least upper bound 

of f , and 

                        .),()(lim 0 tshtssn
n




   

 Also from (2.1), 

 

  




   




dsssftt
t

ht
nn

n
n

n 0

)(,)(lim)(lim 01                
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 dsssft n

t

ht n
n

n
))(,(lim)(lim

0
0    
    

   


t

ht
n

n
n

n
dsssft

0

)(lim,()(lim 0   )(t  (2.5) 

Therefore by (2.4) and (2.5), solution of system (2.0) converge to the 

)(t , where )(t is a continuous differentiable function on 

 n

H EthtB ],,[ 0  .  

Assuming 

  
 

t

ht
mmm dsssftt

0

)(,)()( 01   is another solution 

of (2.0) on          tht ,0   such that for any real value k>0 on 

 tht ,0   

 

     
 

t

ht

t

ht
mnmn dsssfdsssftt

0 0

)(,)(,)()( 11     

)(max
0

0 sVVk
tsht 

  ,                                        (2.6)  

where ,)( 00 httV  and .)()()( sssV mn    

By the contraction of f in    Nn

oH ExEthtB ,, , k is the 

Lipschitz constant and f  is bounded with a fixed point   )(t . 

Thus (2.5) is the unique solution of (2.0). 

 

NUMERICAL APPROXIMATION PROCEDURE 

   An analytic solution of (2.0) is not easily obtained unlike its 

equivalent ordinary differential system.  A numerical approximation 

method is employed on each delay sub-interval, and the solution is 

presented in form of a finite series. The procedure involve the 

approximation of solution of the system for each Ti; i = 1, 2, 3, ., ., ., n 

delay subinterval as the  delay h varies on a regular basis. The solution 

on the preceding interval is use to approximate the solution on the 

immediate succeeding interval, with the time function (t) depending 

on the origin of each delay subinterval under consideration        

    Linearizing the time variants  ))(,( htxtf   of (2.0) with 

respect to x(t) results in a simple linear first order retarded equation 

represented by the initial value problem  

,,)(

0),()(

000 tshtsx

hhtxatx








                      (3.0)  

where ‘a’ is a scalar and ,)( 0sx  is the initial value at 

tsht 0 . System (3.0) admits a unique solution on 

 tht ,0  .  

Consider (3.0) on Ti sub-interval, 

   001 : tthtT   

   htttT  002 :  

   htthtT 2: 003   

   htthtT 32: 004   

    :  

   ,)1(: 00 nhtthntTn  , 

for h > 0, the solution is formulated using the numerical 

approximation for each delay subinterval as  follows. 

For

 001 : tthtT 

)1.3(

.

,)()(

10

10

101

cta

cdta

cdttxatx















  

At 010 )(,  txhtt , and substituting for t  and    )(1 tx  in   

(3.1), we obtained   

))(()( 0001 httatx   .                     (3.2) 

 

           For T2; ,00 httt       

          








.)))(((

,)()(

20000

212

cdthttaa

cdttxatx


  

)3.3(.))(
2

( 20

2

0

2

0 actht
t

ata     

At  )),(()(, 00020 httatxtt    and substituting for 

t and x2(t) in (3.3a), we obtained,     

)))((
!2

())(()( 00

2

0

2

0

2

0002 httt
tt

ahttatx 


     (3.3b)

  

 For T2; httht 200  ,   

 
 






.
3

)))
0

)(
0

(
!2

2
0

2

(
0

2))
0

((
00

(

,3)(2)(3

cdthttt
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At 

)),)((
!2

())(()(, 00

2

0

2

0

2

00030 httt
tt

ahttatxhtt 


   

substituting for t and x3(t) in (3.4a) we obtained 

 

))).0)(0)0((
!2

2)
0

(2

(
!3

3)
0

(3

(0

3

))
0

(
0

)
0

((
!2

2
0

2

0

2
)

0
((00)(3

htthtt

htthtt

a

htthtt
tt

ahttatx














 












    (3.4b)         

For Tn; nhtthnt  00 )1( ,  

  

n
cdthtthntt

n

nhntntnaa

dthtthtt
htthtt

aa

dthtthtt
tt

ahttaa

ncdttnxatnx

 





 










 




















































)
0

(
0

...))1(
0

((...
)!1(

1))1(
0

(1

0
1

...)
0

)(
0

)
0

((
!2

2)
0

(2

!3

3)(3

0
3

))0(0))0((
!2

2
0

2

0

2
))

0
((

00
(

1)(1)(







 

At ),()(,)1( 10 txtxhntt nn  , 

(3.5)   )
0

.(..))1(
0

)(
0

((
!

1))1(
0

(1

!

)
0

(

0

)
0

(
0

...))1(
0

((
)!1(

1))1(
0

(1(

0
1

...)
0

(
0

)
0

((
!2

2)2
0

(2(

!3

3)
0

(3(

0
3

))
0

(
0

)
0

((
!2

2
0

2

0

2
))0((00































































hthntnhtt
n

nhntnt

n

nnhtntn
a

htthntt
n

nhntnt
na

htthtt
htthtt

a

htthtt
tt

ahttanx









 

Stability analysis 

   Considering the resulting approximate solution of system (3.0) on 

each T Ti; i = 1, 2, 3, ., ., ., n  delay subinterval with a corresponding 

initial condition as stated below, 

 001 : tthtT  and   000  htx , 

 )).(()( 0001 httatx    

 htttT  002 : ,and 

))(()( 00001 httatx   , 

 

)))((
!2

())(()( 00

2

0

2

0

2

0002 httt
tt

ahttatx 


 

. 

 ,2: 003 htthtT   and 

 

)))((
!2

())(()( 00

2

0

2

0

2

00002 httt
tt

ahttahtx 


  , 

 

))).0)(0)0((
!2

2)
0

(2

(
!3

3)
0

(3

(0

3

))
0

(
0

)
0

((
!2

2
0

2

0

2
)

0
((00)(3

htthtt
htthtt

a

htthtt
tt

ahttatx












 











 nhtthntTn  00 )1(; , and 

  )()1( 10 txhntx nn  , 

   

 


































































)
0

.(..))1(
0

)(
0

((
!

1))1(
0

(1

!

)
0

(

0

)
0

(
0

...))1(
0

((
)!1(

1))1(
0

(1(

0
1

...)
0

(
0

)
0

((
!2

2)2
0

(2(

!3

3)
0

(3(

0
3

))
0

(
0

)
0

((
!2

2
0

2

0

2
))0((00

hthntnhtt
n

nhntnt

n

nnhtntn
a

htthntt
n

nhntnt
na

htthtt
htthtt

a

htthtt

tt

ahttanx









  

 

The asymptotic stability properties will now be analyzed for any 

change in the initial condition .,)( 00 tshtsx    

 

    Definition  Han(2001), 

(i) The solution x(t) of system (3.0) is Lyapunov stable if for 

any 0 , there exists   0,   ht  such that 

if  )(s  then 

  00,)(, tshtsnhtx   . 

(ii) The solution x(t) of (3.0) is asymptotically stable if it is 

Lyapunov stable, and there exists a  ht  11   

satisfying 1)(  s  such that 

  0)(,  snhtx   as t → . 

(iii) The solution x(t) is uniformly asymptotically stable if it is 

stable, and furthermore there exists 02  (independent 

of t-h) such that if 2)(  s ,   then  

  0)(,  snhtx   as t . 
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Theorem 2 

   Assume 
n

H EDxBf :  for 
nED   is continuous, 

satisfy local Lipschitzian condition on   ...2,1,0,,0  ntnht , 

and global Lipschitzian condition on   ,0 ht ,and is compact in 

D .  The resulted solution  )(, 0 snhtx   of (3.0) is, 

(i) Lyapunov stable if for any change in the initial 

condition ,),()( 000 tshtstx   the 

solution ))(,( 0 snhtx  remained valid on the 

entire   ,0 ht . 

(ii) Asymptotically stable if 

limit   0)(, 0  snhtx   for an infinite 

increment in time (t). 

Proof 

   Since(3.0)is continuous on each   ...,2,1,0for ,0  ntnht  

and by the approximating technique formulation, let there exist 

solutions, 

  )(,)( 0 snhtftx  and 

 )(,)( 0 snhtftx  , for .00 tsht         (4.1) 

satisfying (3.0). If for any pre-determined constant 0  there 

exists a   ,ht  , for   ht0 , such that 

 )()( txtx  holds,  it follows that,  

      )(,)(, 00 shtfshtf .                  (4.2) 

This implies that  )(, 0 snhtx   is valid on   ,0 ht , and 

is Lyapunov stable. 

 If 1  is a constant, and   10 ht  such that 

 ht  11  >0, then (4.1) implies 1)()(  txtx .  Also 

since (3.0) is locally Lipschitzian on   tnht ,0  , then 

  nisnhtxi ...,3,2,1,)(, 0    of (3.2), (3.3) and 

(3.5) are monotone functional solutions on the bounded interval 

 nhthnt  00 ,)1( . 

By Weierstrass – Bolzano concept of boundeness in a close 
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By the continuity of f on  tnht ,0  , the solutions  

 )(, 0 shtxn   and   )(, shtxn 


 converge to  

)()( tandt


  respectively. Thus f  forms a compact set in D, 

and  

                 0lim
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t
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
.                                               

  (4.4) 

Therefore the resulted solution of (3.0) is asymptotically stable. 

 

ILLUSTRATION 

   Consider the retarded system of the form, 

 



,11)1(,1)1(

)1(1)(

00 tandtxx

txtx
    (5.0) 

                   

By the numerical approximation method in (3.0),  

             )(1 tx  on 21  t ,   

      








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101

2
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cdt

cdttxtx

 (5.1) 

Solving (5.1) at an initial state of 1)1(0 x , 
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    12)(1  ttx      )1(21  t ,(5.2)a 

 

and   .)2(21)1(1  ttx .  (5.2b) 

      Considering )(2 tx  on 32  t ,  

    212 ))1(1()( cdttxtx    

  2

2

2 2)1221( cttcdtt    (5.3) 

Solving (5.3) at an initial state of  )1(21)2(1  tx , 
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       Considering )(3 tx  on 43  t ,  
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Therefore for )(txn  on 1 ntn    
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Indeed, the general solution of (5.0) is expressed as  

  ,1,)(exp21)( niittxn   (5.7a) 

where i measures the change in time lag (h) and   

 ))1((exp21)1(  ittxn .  (5.7b) 

The result (5.7)  above is comparative to the iterative method for an 

equivalent ordinary differential equation of (5.0)  

   Also by theorem 2 , the solution x(t) is asymptotically stable, if 

 )()( 01 txtx  such that 0)()(lim 01 


txtx
t

 

Using solutions (5.2a), (5.4a) and (5.6a)  with the initial conditions, 

then 

 0))(exp(2lim)()(lim 1 





ittxtx
t

nn
t

 

This implies that every solution of system 5.0 is asymptotically stable. 

 

CONCLUSION 

   The theorem on the existence and uniqueness of solution of delay 

retarded system is established and proved using the convergent 

properties of an integral equivalent of the retarded system. A 

numerical approximation method is employed to find solution of the 

system equation for each n-subinterval, and the asymptotic stability 

property is analyzed. Results obtained from illustration proved the 

suitability of this analysis. 
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